Chapter 5. Chemical Bond Energy, Specific Heats, C_p and C_V for the Transition Elements

1. Chemical Bond Energy $\Phi_{p}(r_1)$

Continuing the mechanistic analysis of the solid mass atom begun in chapters three and four, the chemical bond energy, the specific heat at constant pressure C_p and the specific heat at constant volume C_v for the transition metals are derived in chapter five. 3.3 gives the field strength of an isolated atom at a distance r from the center of mass of the given atom where $h_0^+ < r_1$. At temperature T with no heat or electrical flow in the metal, replace h_0 in 3.3 with the average radius of the atom r_0 and using fig. 5.1:

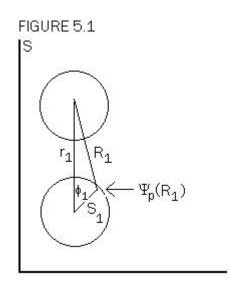
5.1
$$\Psi_{p}(R_{1}) = \Psi_{p}(r_{0}^{+}) + \frac{\partial \Psi}{\partial r} p(r_{0}^{+}) \cdot (R_{1} - r_{0}^{+}) + ... : r_{o} < R_{1} \lesssim 3r_{o}$$

$$|\Psi_{p}(r_{0}^{+})| << |\Psi_{p}(r_{0}^{-})|$$

The potential energy $\Phi_{\rm p}$, called the chemical bond energy, between two identical atoms whose center-to-center distance is ${\rm r_1}$ is:

5.2
$$\Phi_{p}(r_{1}) = \int_{V}^{P(S_{1})} \Psi_{p}(R_{1}) S_{1}^{2} \sin \phi_{1} dS_{1} d\phi_{1} d\theta_{1}$$

Where $R_1^2 = r_1^2 + S_1^2 - 2r_1S_1\cos\phi_1$. The mass density is given by $\rho(S_1) = a_p\left(\frac{S}{r_0}1\right)^p$, $a_p = \frac{(p+3)m}{4\pi r_0^3}$, where for an isolated atom: -3.0 . See figure 5.1



All measurements are taken from inertial frame S. With r_1 =2 r_0 +R, expand $\Phi_p(R)$ in a power series in R. $2r_0$ +R $_0(T)$ is the average distance between the center of mass of two adjacent atoms at temperature T.

$$\begin{split} 5.3 \quad & \Phi_p(R) = a_0 + a_1 R + a_2 R^2 + ..., \quad 0 \leq R \lesssim 10^{-10} \text{cm} \\ & (\frac{d\Phi_p}{dR})_p = a_1 + 2a_2 R + 3a_3 R^2 + ... = F(R) \\ & (\frac{d\Phi_p}{dT})_p \Big|_{R_0(T)} = (\frac{d\Phi}{dR_0}p)_p (\frac{dR}{dT}^0)_p = \Big[a_1 + 2a_2 R_0 + 3a_3 R_0^2 + ...\Big] (\frac{dR}{dT}^0)_p = -F(R) (\frac{dR}{dT}^0)_p \end{split}$$

F(R) is the magnitude of the force between two adjacent atoms where $2r_0+R$ is the instantaneous distance between the center of mass of two adjacent atoms at temperature T. F(R_o) is the magnitude of the force between two adjacent atoms where $2r_0+R_o(T)$ is the average distance between the center of mass of two adjacent atoms at temperature T. A rough evaluation of $\Phi_p(R)$ follows. $\Phi_p(0)=a_0\approx -0.1$ ev $\approx -10^{-13}$ erg and F(0)= $-a_1\approx -10^{-4}$ dy, See 5.3.

2. Specific Heat at Constant Pressure Cp

 C_P is the amount of heat energy ΔQ per atom that must be supplied to a given atom to change its temperature by ΔT , in the limit as ΔT —>0 K 0 , while maintaining the mass sample at constant external pressure. Experimentally, the external pressure on a transition metal is P_e =1atm=10 6 dy/cm 2 . For the transition metals C_P ≈3K for T≈293 o K. The total energy of an atom in a solid is E_T =KE+PE+m C_1 and equating the change per K^0 of the total energy of the atom to the change in energy in, minus the change in energy out per K^0 yields:

$$\begin{split} &(\frac{dE_T}{dT})_P = (\frac{dQ}{dT})_P - P_e(\frac{dV}{dT})_P - \frac{N}{N_T} su \Big\{ \Omega_{Cr}(\frac{dN}{dT}ph,out)_P + \frac{3}{2} K\Delta T_{ph}' (\frac{dN'}{dT}ph,in)_P - \frac{3}{2} KT_{ph}' (\frac{dN''}{dT}ph,in)_P \Big\} \\ &\text{Each term to be described below. Solving for } &(\frac{dQ}{dT})_P \text{ yields:} \\ &C_P = &(\frac{dQ}{dT})_P = &(\frac{dE_T}{dT})_P + P_e(\frac{dV}{dT})_P + \frac{N}{N_T} su \Big\{ \Omega_{Cr}(\frac{dN}{dT}ph,out)_P + \frac{3}{2} K\Delta T_{ph}' (\frac{dN'}{dT}ph,in)_P - \frac{3}{2} KT_{ph}' (\frac{dN''}{dT}ph,in)_P \Big\} \\ &\text{And} \end{split}$$

$$\begin{aligned} 5.4 \quad & C_{\boldsymbol{p}} = (\frac{dKE}{dT})_{\boldsymbol{p}} + (\frac{dPE}{dT})_{\boldsymbol{p}} + m(\frac{dC}{dT}^{1})_{\boldsymbol{p}} + P_{\boldsymbol{e}}(\frac{dV}{dT})_{\boldsymbol{p}} \\ & \quad + \frac{N}{N_{T}} Su \Big\{ \Omega_{\boldsymbol{Cr}} (\frac{dN}{dT}^{ph,out})_{\boldsymbol{p}} + \frac{3}{2} K\Delta T_{\boldsymbol{p}h}' (\frac{dN'}{dT}^{ph,in})_{\boldsymbol{p}} - \frac{3}{2} KT_{\boldsymbol{p}h}' (\frac{dN''}{dT}^{ph,in})_{\boldsymbol{p}} \Big\} \end{aligned}$$

KE is the kinetic energy of one atom and PE is the potential energy of one atom bonded to n atoms. In the case of the transition elements, n=6. $(\frac{dKE}{dT})_P = \frac{3}{2}K$, and $(\frac{dPE}{dT})_P$ for a transition metal represents the change in potential energy wrt

temperature at constant external pressure of one atom coupled to six atoms. $(\frac{d\Psi_p}{dT})_p$ represents the change in potential energy wrt temperature at constant pressure of two atoms coupled together.

Using 5.3,
$$(\frac{dPE}{dT})_p = 3(\frac{d\Phi_p}{dT})_p = 3[a_1 + 2a_2R + 3a_3R^2 + ...](\frac{dR}{dT})_p$$
. From 4.5; $(\frac{dR}{dT})_p = 2r_0(\frac{d}{dT}\frac{\Delta L(T)}{L_a})_p \equiv 2r_0\alpha(T)$ and

5.5
$$\left(\frac{dPE}{dT}\right)_{P} = 6r_{o}\alpha(T) \cdot \left[a_{1} + 2a_{2}R + 3a_{3}R^{2} + ...\right]$$

$$\left(\frac{dPE}{dT}\right)_{P} \begin{vmatrix} = 6r_{o}\alpha(293) \cdot \left[a_{1} + 2a_{2}R_{o}(293)\right] \\ = 6r_{o}\alpha(293) \cdot \left[a_{1} + 2a_{2}R_{o}(293)\right] \end{vmatrix}$$

 $\alpha(T)$ has been determined from experimental data and is listed in reference 1, chapter 4. $\alpha(293)$ evaluated for Ag is, $\alpha(293)=1.9\cdot 10^{-5}(\frac{1}{\sigma_{K}})$ and from table 4.1, $R_{o}(293)_{Ag}=1.1\cdot 10^{-11} cm$

$$\frac{\text{dPE}}{\text{dT}} \Big|_{\substack{T=293 \text{ }^{\circ}\text{K} \\ R=R_{0}(293)}} \text{becomes: } \frac{\text{dPE}}{\text{dT}} \Big|_{\substack{T=293 \text{ }^{\circ}\text{K} \\ R=R_{0}(293)}} = 1.5 \cdot 10^{-12} \cdot \left[a_{1} + 2.2 \cdot 10^{-11} a_{2} \right],$$

 $a_1+2.2\cdot 10^{-11}a_2$ to be evaluated below.

From 3.28, the total internal energy mC₁ of 1 atom is mC₁=- $\frac{m^2H}{r_0}$ and $m\frac{dC}{dT}$ 1= $\frac{m^2H}{r_0^2}\frac{dr_0}{dT}$.

See Appendix 5A. Evaluating $\frac{m^2H}{r_0^2}$ for Ag yields $m\frac{dC}{dT}$ 1=1.9·10² $\frac{dr_0}{dT}$

Note that using 4.6, the pressure P_{at} that two atoms in a transition metal exert on one another is $P_{at} = \frac{KT}{(2r_0)^2R}$. The average volume occupied by one atom in a transition metal is

$$V = (2r_o + R)^3 \text{ and } \frac{dV}{dT} = 3(2r_o + R)^2 (\frac{dR}{dT}) = 3(2r_o + R)^2 (2r_o \alpha) \\ \dot{=} 3(2r_o)^2 (2r_o \alpha). \quad P_{at} \frac{dV}{dT} \text{ becomes, } P_{at} \frac{dV}{dT} = 3(2r_o + R)^2 (2r_o \alpha) \\ \dot{=} 3(2r_o + R)^2$$

 $\frac{\text{KT}}{(2r_0)^2 \text{R}} \left\{ 3(2r_0)^2 (2r_0\alpha) \right\} \text{ and treating } \alpha \text{(293) as a constant (See reference 1, chapter 4) then}$

$$\begin{split} &\text{R$\stackrel{\dot{=}$}{2}r}_{\color{red}o}\alpha \text{(293)T and } P_{at}\frac{\text{dV}}{\text{dT}} = 3\text{K}(2r$_{\color{red}o}\alpha \text{T})R^{-1$\stackrel{\dot{=}}{=}}$\text{3}$\text{K}. By direct contact, } P_{at}\frac{\text{dV}}{\text{dT}} = \left(\frac{\text{dKE}}{\text{dT}}\right)_{p} + \left(\frac{\text{dPE}}{\text{dT}}\right)_{p} + m\left(\frac{\text{dC}}{\text{dT}}\right)_{p} = 3\text{K}. \end{split}$$
 If $\frac{\text{dV}}{\text{dT}} = 0$, then $\left(\frac{\text{dKE}}{\text{dT}}\right)_{p} = 0$, and $m\left(\frac{\text{dC}}{\text{dT}}\right)_{p} = 0$. We however want a more accurate expression for $P_{at}\frac{\text{dV}}{\text{dT}}$ and will retain $\left(\frac{\text{dKE}}{\text{dT}}\right)_{p} + \left(\frac{\text{dPE}}{\text{dT}}\right)_{p} + m\left(\frac{\text{dC}}{\text{dT}}\right)_{p} = \frac{3}{2}\text{K} + 6r_{o}\alpha(293) \cdot \left[a_{1} + 2a_{2}R_{o}(293)\right] + \frac{m^{2}H}{r^{2}}\frac{\text{d}r_{o}}{\text{dT}}. \end{split}$

The classical theory of specific heats for solids mistakenly calls C_p , C_v . In the experimental setup under which specific heat is measured, the solid is unconstrained and for $\Delta T \neq 0$, the change in volume is $\Delta V \neq 0$. To measure C_v , the solid

must be constrained so as not to expand for $\Delta T > 0$ and this takes $P_{at} = \frac{KT}{(2r_0)^2 R} \sim 10^{12} \frac{dy}{cm}^2$ applied external pressure, which is order of magnitude, the pressure due to gravity at the center of the earth. Experimentally, pressures greater than $\sim 10^{10} \frac{dy}{cm}^2$ for times >1sec, have not been obtained.

Consideration of the $P_e(\frac{dV}{dT})_P$ term follows.

$$\text{With P_e=$10^6} \frac{dy}{cm^2}, \ P_e(\frac{dV}{dT})_P = 3 \cdot 10^6 (2r_o)^3 \alpha(T) \approx 10^7 (r_o)^3 \alpha(T) \approx 10^{-17} \alpha(T) \approx 10^{-22} \approx 10^{-6} \text{K} < \text{K}$$

The $P_e(\frac{dV}{dT})_P$ term is therefore dropped from 5.4. 5.4 becomes:

$$5.6 \ C_{p} = \frac{3}{2} K + (\frac{dPE}{dT})_{p} + \frac{m^{2}H}{r_{0}^{2}} \frac{dr_{0}}{dT} + \frac{N}{N_{T}} su \left\{ \Omega_{Cr} (\frac{dN}{dT}^{ph,out})_{p} + \frac{3}{2} K\Delta T'_{ph} (\frac{dN'}{dT}^{ph,in})_{p} - \frac{3}{2} KT'_{ph} (\frac{dN''}{dT}^{ph,in})_{p} \right\}$$

Consideration of the $\frac{N}{N_{\tau}}$ su term follows.

 $\frac{(dN_ph,out)}{dT}p_i \ s \ (\frac{dN_ph,out}{dT})_p = \lim_{\Delta T \to 0} (\frac{\Delta N_ph,out}{\Delta T})_p, \ and \ \frac{\Delta N_ph,out}{\Delta T} \ is the number of photons CREATED and emitted by a surface atom during the time interval at which the temperature of the transition metal changes from T to T+<math>\Delta$ T. Similarly, $(\frac{dN_i}{dT}p_i,in)_p \ is the number of photons reflected by a surface atom during the time interval at which the temperature of the transition metal changes from T to T+<math>\Delta$ T. $\Delta T_{ph} = T_{ph,out} - T_{ph,in} \ is the equivalent temperature of the photon out, minus the equivalent temperature of the photon in. <math display="block"> (\frac{dN_i}{dT}p_i,in)_p \ is the number of incoming photons that are adsorbed by a surface atom during the time interval at which the temperature of the transition metal changes from T to T+<math>\Delta$ T. Note that we are assuming that Δ T>0 and therefore $\Delta T_{ph}^i < 0$. As hypothesized in chapter six, a photon is a solid mass particle created by collision of two solid mass atoms. Let $\Omega_{ph} = \Omega$ (T) $_{ph}$ represent the average energy it takes to create a photon with 0 photon kinetic energy from a given atom, as measured from an inertial frame at rest w.r.t. the center of mass of the photon. As shown in chapter 6, section 5: Ω (T) $_{ph} = -BE(T)_{ph}$ where BE(T) $_{ph} < 0$ is the binding energy of the photon. The total average energy it takes to create one photon at temperature T is:

5.7
$$\Omega_{\text{Cr}} = -BE_{\text{ph}} + \frac{3}{2}KT$$

The photons under consideration are in the infrared and with BE $_{ph}$ \approx -0.1ev and $\frac{3}{2}$ K(293)= 6.1·10⁻¹⁴erg =0.038ev, Ω_{Cr} becomes Ω_{Cr} =0.14ev=2.2·10⁻¹³erg In order to experimentally determine 5.6, consider a calorimeter filled with water at 373°K into which is placed a cube of a transition metal L cm on a side. Initially the temperature difference ΔT between the cube and the water is 80 K°. Given N $_{Su}$ is the number of atoms on the surface of the cube and N $_{T}$ is the total number of atoms in the

cube:
$$\frac{N}{N_T}$$
Su= $\frac{12r_0}{L} \approx \frac{10^{-7}}{L}$.

The power density, PD_{tm} , emitted by the surface atoms of a transition metal due to the KE of emitted photons is 1.0 to 0.01 that of a black body. At 293° K a black body emits $4.2 \cdot 10^{5} \frac{\text{erg}}{\text{sec cm}^{2}}$ and using Ag with $r_{o} = 1.3 \cdot 10^{-8}$ and emissivity $\epsilon = 0.03$ as an example: $4.2 \cdot 10^{5} (1.3)^{2} \cdot 10^{-16} (.03) = 2.1 \cdot 10^{-12} \frac{\text{erg}}{\text{sec atom}}$.

Let T represent the temperature of the transition metal cube and let the water reservoir be large enough so that the water temperature remains constant. With $\frac{3}{2}\text{K}(293) = 6.1 \cdot 10^{-14}\text{erg}$, solve for $\frac{dN}{dT}\text{ph},\text{out}$ this yields $\frac{dN}{dT}\text{ph},\text{out} = 34\frac{p \text{hotons}}{8 \text{sec atom}}$ and with $\frac{dN}{dT}\text{ph},\text{out} \cdot \frac{dt}{dt} = 34 \cdot \frac{dt}{dt}$. $\frac{N}{N}\text{Su}\Omega_{\text{Cr}}(\frac{dN}{dT}\text{ph},\text{out})_{p}\text{becomes}$: $\frac{N}{N}\text{Su}\Omega_{\text{Cr}}(\frac{dN}{dT}\text{ph},\text{out})_{p} = \frac{10^{-7}}{10^{-7}}(2.2 \cdot 10^{-13}) \ 34 \cdot \frac{dt}{dT} = 7.5 \cdot 10^{-19}(\frac{1}{L})\frac{dt}{dT}(\frac{\text{erg}}{\text{k}^{0}}).$ For specificity consider a cube, 1cm on a side. The number of atoms on the surface of the cube is $N_{\text{Su}} = \frac{6}{(2r_{0})^{2}} = 9.0 \cdot 10^{15}$ Ag atoms and the cube emits $N_{\text{Su}}(\frac{dN}{dT}\text{ph},\text{out})_{p} = 9.0 \cdot 10^{15} \cdot 34 = 3.1 \cdot 10^{17} \frac{\text{photons}}{\text{oube sec}}$. The total power given up by the cube in order to emit $3.1 \cdot 10^{17} \frac{\text{photons}}{\text{oube sec}}$ is $(\Omega_{\text{Cr}})N_{\text{Su}}(\frac{dN}{dT}\text{ph},\text{out})_{p} = (2.2 \cdot 10^{-13})(3.1 \cdot 10^{17}) = 6.8 \cdot 10^{4} \frac{\text{erg}}{\text{oube sec}}$. The total number of atoms in the cube is $\frac{1}{(2r_{0})^{3}} = 5.8 \cdot 10^{22}$ Ag atoms and the power given up by the cube per atom in the cube is $P_{\text{at}} = (6.8 \cdot 10^{4})(5.8 \cdot 10^{22})^{-1} = 1.2 \cdot 10^{-18} \frac{\text{erg}}{\text{atom sec}}$. Given that $T = 0.485 \cdot 10^{16} (\text{KE}(\text{erg}))$ and $\frac{dT}{dt} = 0.485 \cdot 10^{16} \frac{dKE}{dt} = 0.485 \cdot 10^{16} (\frac{1}{2})P_{\text{at}} = 2.9 \cdot 10^{-3} (\frac{K^{0}}{800})$. Evaluating $\frac{N}{N_{\text{T}}} \text{Su}\Omega_{\text{Cr}}(\frac{dN}{dT}\text{ph},\text{out})_{p}$ for $T = 293^{0}\text{K}$ yields, $\frac{N}{N_{\text{T}}} \text{Su}\Omega_{\text{Cr}}(\frac{dN}{dT}\text{ph},\text{out})_{p} = 2.8 \cdot 10^{-16} (\frac{\text{erg}}{K^{0}}) = 2.0 \text{K}$. Evaluating $\frac{N}{N_{\text{T}}} \text{Su}\Omega_{\text{Cr}}(\frac{dN}{dT}\text{ph},\text{out})_{p}$ for $T = 373^{0}\text{K}$ yields, $\frac{N}{N_{\text{T}}} \text{Su}\Omega_{\text{Cr}}(\frac{dN}{dT}\text{ph},\text{out})_{p} = 2.8 \cdot 10^{-16} (\frac{\text{erg}}{K^{0}}) = 2.0 \text{K}$.

For thin films, the $\frac{1}{L}$ term will strongly influence C_p for calorimeters using water as a heat source. See Appendix 5B.

The emissivity of water is ϵ =.93 and at 373°K a black body emits 1.1·10 6 sec cm² and water with $r_0 = 1.25 \cdot 10^{-8}$ cm emits $1.1 \cdot 10^6 (1.25)^2 \cdot 10^{-16} (.93) = 1.7 \cdot 10^{-10} \frac{\text{erg}}{\text{sec atom}}$. At 373°K, the average kinetic energy of a photon is 7.7·10⁻¹⁴erg and the water surface emits $\frac{dN_{ph,out,w}}{dt}$ = 2.2·10³ $\frac{photons}{secatom}$. The reflectance of Ag in the thermal infrared is R=.97 and $\frac{dN_{ph,out,w}}{dt} \cdot R = \frac{dN'_{ph,in}}{dt} = 2.1 \cdot 10^3 \frac{\text{3 photons}}{\text{sec atom}}$ and $\frac{dN'_{ph,in}}{dT} \cdot \frac{dt}{dT} = 2.1 \cdot 10^3 \cdot \frac{dt}{dT}$. With $N_{Su} = 9.0 \cdot 10^{15}$, the total number of $\frac{\text{photons}}{\text{sec}}$ reflected from the surface of the cube is $9.0 \cdot 10^{15} (2.1 \cdot 10^3) = 1.9 \cdot 10^{19} \frac{\text{photons}}{200}$ The total power in, due to photons that will reflect from the Ag cube is, $7.7 \cdot 10^{-14} (1.9 \cdot 10^{19}) =$ 1.5·10⁶($\frac{erg}{seo}$). The total number of atoms in the cube is N_T= $\frac{1}{(2r_s)^3}$ =5.8·10²² Ag atoms and the power in per atom is $(1.5 \cdot 10^6)(5.8 \cdot 10^{22})^{-1} = 2.6 \cdot 10^{-17} \frac{\text{erg}}{\text{sec atom}}$. The total power in retained by the cube per atom is, $\frac{dE}{dt} = -2.6 \cdot 10^{-17} (\frac{\Delta T_{ph}^{'}}{80}) = -3.3 \cdot 10^{-19} \Delta T_{ph}^{'} \frac{\text{erg}}{\text{sec atom}}$ Given that T=0.485·10¹⁶KE(erg) and $\frac{dT}{dt}$ =0.485·10¹⁶ $\frac{dKE}{dt}$ =0.485·10¹⁶ $(\frac{1}{2})\frac{dE}{dt}$ = -8.0·10⁻⁴ $\Delta T_{ph}'(\frac{K^0}{\$ e 0})$. $\frac{N}{N_{\tau}} Su(\frac{3}{2} K \Delta T'_{ph}) (\frac{dN'_{ph,in}}{dT})_{p} \text{ becomes: } \frac{N}{N_{\tau}} Su(\frac{3}{2} K \Delta T'_{ph}) (\frac{dN'_{ph,in}}{dT})_{p} = -5.5 \cdot 10^{-17} (\frac{erg}{K^{0}}) = -0.39 K.$ The absorbance of Ag is A=1-.97=.03 and $\frac{dN_{ph,out,w}}{dt}$ ·A = $\frac{dN''}{dT}_{ph,in}$ =66 $\frac{photons}{sec atom}$ and $\frac{dN''_{ph,in}}{dt} = \frac{dN''_{ph,in}}{dt} \cdot \frac{dt}{dT} = 66 \cdot \frac{dt}{dT}$. With $N_{Su} = 9.0 \cdot 10^{15}$, the total number of $\frac{photons}{sec}$ absorbed by the surface of the cube is $9.0 \cdot 10^{15} (66) = 5.9 \cdot 10^{17} \frac{\text{photons}}{\text{sec}}$. The total power in, due to photons that will be adsorbed by the Ag cube is, $7.7 \cdot 10^{-14} (5.9 \cdot 10^{17}) =$ $4.5 \cdot 10^4 (\frac{\text{erg}}{\text{sec}})$. The total power in per atom retained by the cube is $\frac{\text{dE}}{\text{dt}} = 4.5 \cdot 10^4 (N_T)^{-1} =$ $4.5 \cdot 10^4 (5.8 \cdot 10^{22})^{-1} = 7.8 \cdot 10^{-19} (\frac{\text{erg}}{\text{secatom}}).$ Given that T=0.485·10¹⁶KE(erg) and $\frac{dT}{dt}$ =0.485·10¹⁶ $\frac{dKE}{dt}$ =0.485·10¹⁶ $(\frac{1}{2})\frac{dE}{dt}$ =1.9·10⁻³ $(\frac{K^0}{sec})$ $-\frac{N}{N_{\tau}} \text{Su} \frac{3}{2} \text{KT}'_{ph} (\frac{dN''}{dT}^{ph,in})_{P} \text{ becomes: } -\frac{N}{N_{\tau}} \text{Su} \frac{3}{2} \text{KT}'_{ph} (\frac{dN''}{dT}^{ph,in})_{P} = -2.7 \cdot 10^{-16} (\frac{\text{erg}}{\text{K}^{0}}) = -1.9 \text{K}$ Summing up results:

5.8 $\frac{dN_{ph,out}}{dT}$ =34 $\frac{photons}{sec atom}$ emitted by each atom on the surface of the cube at 293 o K $\frac{dN_{ph,out}}{dT}$ =93 $\frac{photons}{sec atom}$ emitted by each atom on the surface of the cube at 373 o K $\frac{dN_{ph,out,w}}{dt}$ =2.2•10 $\frac{3photons}{sec atom}$ emitted by each atom on a water surface at 373 o K

And

5.9
$$\frac{N}{N_T}$$
Su $\Omega_{cr}(\frac{dN}{dT}^{ph,out})_P$ =1.9K at 293°K emitted by the cube $\frac{N}{N_T}$ Su $\Omega_{cr}(\frac{dN}{dT}^{ph,out})_P$ =2K at 373°K emitted by the cube $\frac{N}{N_T}$ Su $(\frac{3}{2}$ K Δ T'_{ph}) $(\frac{dN}{dT}^{ph,in})_P$ =-0.39K reflected from the cube $-\frac{N}{N_T}$ Su $\frac{3}{2}$ KT'_{ph} $(\frac{dN}{dT}^{ph,in})_P$ =-1.9K adsorbed by the cube, T'_{ph}=373°K

With average value $\text{Avg} \frac{N}{N_T} \text{Su}\Omega_{\text{Cr}} (\frac{dN}{dT}^{\text{ph,out}})_{\text{P}} = 2\text{K}$ as T of the cube goes from T=293°K to T=373°K, 5.6 evaluated for Ag becomes:

5.10
$$C_p = \frac{3}{2}K + 1.1 \cdot 10^4 [a_1 + 2.2 \cdot 10^{-11}a_2]K + 1.9 \cdot 10^2 \frac{dr_0}{dT} - 0.29K = 3.1K$$

If $\frac{dr_0}{dT}$ is small enough so that $1.9 \cdot 10^2 \frac{dr_0}{dT}$ may be dropped from 5.10, then $\left[a_1 + 2.2 \cdot 10^{-11} a_2\right] = 1.7 \cdot 10^{-4}$ and $C_p = \frac{3}{2} \text{K} + 1.9 \text{K} - 0.29 \text{K} = 3.1 \text{K}$. If $1.9 \cdot 10^2 \frac{dr_0}{dT}$ must be retained in 5.10, then $1.1 \cdot 10^4 \left[a_1 + 2.2 \cdot 10^{-11} a_2\right] \text{K} + 1.9 \cdot 10^2 \frac{dr_0}{dT} = (1.9) \cdot \text{K}$ and 5.10 holds as written. Further, if it should turn out that $1.1 \cdot 10^4 \left[a_1 + 2.2 \cdot 10^{-11} a_2\right] \text{K} = 1.5 \text{K}$, then $\frac{dr_0}{dT} = 2.9 \cdot 10^{-19} \binom{\text{CM}}{\text{K}^0}$.

At T> o K infra red photons are constantly being produced and lost at the surface of the mass sample even in vacuum with no photon input. There is an energy loss from the sample due to the energy, (-BE_{ph}), it takes to compress a CREATED photon from its parent atom plus the kinetic energy of the photon; for a total energy loss of -Be_{ph}+ $\frac{3}{2}$ KT per photon.

For macroscopic transition metal mass samples, experimentally, the photon energy lost per second per cm² is independent of the volume of the material and therefore as used above, only atoms on the surface of the metal produce photons. Unless the energy lost by photon creation and emission is provided by an external source, the temperature T of the sample will go to 0° K as t—> ∞ : $\lim_{t\to\infty}$ T= 0° K. THERE IS NO EQUILIBRIUM GROUND STATE FOR THE SOLID MASS ATOM FOR T> 0° K.

In the above computations leading to 5.10, it was assumed that the emissivity ϵ is measured in an environment with negligible ΔQ and negligible incident photon energy (Photons in).

With
$$r_{ph} << r_{atom}$$
, (Chapter 6. sec. 3), and using 5.1, $|\Psi_p(r_0^+)| << |\Psi_p(r_0^-)| \doteq \frac{mH}{r_0}$

 $\Phi(r_0^+)_{ph,atom}$ becomes: $|\Phi(r_0^+)_{ph,atom}| << \frac{m_{ph}m_{atom}H}{r_0} \approx 10^{-34} \cdot 10^{-22} \cdot 10^{30} \cdot 10^8 = 10^{-18} erg \approx 10^{-6} ev$ with temperature equivalence $\approx 10^{-2}(^{0}K)$. A photon with $KE_{ph} << 10^{-6} ev$. and concomitant temperature equivalence $T << 10^{-2}(^{0}K)$ will escape from the atom.

3. Specific Heat at Constant Pressure C_p as $T \longrightarrow 0^+ {}^oK$

From 5.6,

$$C_{\boldsymbol{p}} = \frac{3}{2}\mathsf{K} + (\frac{\mathsf{dPE}}{\mathsf{dT}})_{P} + \frac{\mathsf{m}^{2}\mathsf{H}}{\mathsf{r}_{0}^{2}} \frac{\mathsf{d}r_{0}}{\mathsf{dT}} + \frac{\mathsf{N}}{\mathsf{N}_{T}} \mathsf{su} \Big\{ \Omega_{\mathsf{Cr}} (\frac{\mathsf{dN}}{\mathsf{dT}}\mathsf{ph,out})_{P} + \frac{3}{2}\mathsf{K}\Delta\mathsf{T}_{\mathsf{ph}}^{\mathsf{I}} (\frac{\mathsf{dN}}{\mathsf{dT}}\mathsf{ph,in})_{P} - \frac{3}{2}\mathsf{K}\mathsf{T}_{\mathsf{ph}}^{\mathsf{I}} (\frac{\mathsf{dN}}{\mathsf{dT}}\mathsf{ph,in})_{P} \Big\}.$$

The first 3 terms are positive and the sum of the last 3 terms is negative. Taking the limit as T approaches 0:

$$\lim_{T\to 0^+} \left\{ \frac{3}{2} K + \left(\frac{dPE}{dT} \right)_P + \frac{m^2 H}{r_0^2} \frac{dr_0}{dT} \right\} = 3K \text{ and setting}$$

$$\lim_{T\to0^+N}\frac{N}{T}\text{Su}\Big\{\Omega_{Cr}(\frac{dN}{dT}^{\text{ph,out}})_P+\frac{3}{2}\text{K}\Delta T_{\text{ph}}'(\frac{dN}{dT}^{\text{ph,in}})_P-\frac{3}{2}\text{K}T_{\text{ph}}'(\frac{dN}{dT}^{\text{ph,in}})_P\Big\}=0 \text{ with result }$$

5.11a
$$\lim_{T\to 0^{+}} C_p = 3K$$

In 1906 Einstein derived the expression $C_p=3K(\frac{T}{T_0})^3$ for $T<300^oK$ and $T_o\geq T\geq 0^oK$. Einstein's theory however is based on the assumption that the force between two atoms is a Hook's Law force $f_H(R)=-k_1R$ and $\overline{f_H(R(T))}=-k_1\overline{R(T)}$ with $\lim_{T\to 0^+}\overline{R(T)}=0^+$ and if no external forces are applied, $\lim_{T\to 0^+}R=0^+$. $2r_0+R$ is the center-to-center distance between two like atoms. Evaluate k_1 where $f_H=-k_110^{-10}=-10^{-4}$ dy and therefore $k_1=10^6\frac{dy}{cm}$.

Consider a transition metal bar of length L and uniform cross section A_0 at $0 < T_1 < 1^0$ K With no external force acting on the ends of the bar, the average atomic force that two atoms exert on one another is $\overline{f_H(R(T_1))}$.

At t=0 equal and opposite forces of magnitude F=|f_0|($\frac{A_0}{2}$)=10⁶R_H($\frac{A_0}{2}$) are applied on either end of the bar tending to elongate the bar $0 < \overline{R(T_1)} < R_H$ Let T₁ be small enough so that the average atomic force $\overline{f_H(R(T_1))}$ that two atoms exert on one another with out arbitrary applied force F>0 is $|\overline{f_H(R(T_1))}| << 10^{-4}$ dy and T₁ small enough so that $0 < \overline{R(T_1)} << R_H$.

L contains ~ $5\cdot 10^7$ L atoms and when subjected to force F, the bar elongates by an amount $\Delta L_H \doteq (R_H - \overline{R(T_1)})(5\cdot 10^7 L) \doteq \{10^{-6} | f_o| - \overline{R(T_1)}\}(5\cdot 10^7 L) \doteq \{10^{-6} | f_o| \}(5\cdot 10^7 L)$. With $|f_o| = 10^{-5}$ dy, it follows that $R \approx 10^{-11}$ cm, and with $L = 10^1$ cm; $\lim_{T \to 0^+} \Delta L_H \doteq 5\cdot 10^{-3}$ cm. With $|f_o| = 10^{-5}$ dy: $\frac{F}{A_0} \doteq 10^{10} \frac{dy}{cm^2}$ which is close to the upper limit of the value for a laboratory applied expansive force.

Using 4.6, the average force $f(T)_{sm}$ between two transition metal solid mass atoms with no external force $|f_0|$ applied to the ends of the metal bar is $f_{sm} = \frac{KT}{\overline{R}(T)}$ and using table 4.1: $2.0 \cdot 10^{-11} < \overline{R}(293) < 2.2 \cdot 10^{-10}$ cm. Consequently $1.8 \cdot 10^{-4} < f(293)_{sm} < 2.010^{-3}$ dy. Equating $f(T)_{sm}$ with the field force exerted by two atoms at center to center distance $2r_0 + (\overline{R}(T) \text{ cm apart, and as } |f(R,0^+)|_{sm} > |\overline{f(R,293)}_{sm}|$, it follows that $|f(R,0^+)|_{sm} > 1.8 \cdot 10^{-4}$ dy. Consequently with $|f_0| = 10^{-5}$ dy; $\lim_{T \to 0^+} \Delta L_{sm} = 0$ cm. Summing up results:

5.11b
$$|f_0| = 10^{-5} \text{dy}, L = 10^{10} \text{cm}, \frac{F}{A_0} \approx 10^{10} \frac{\text{dy}}{\text{cm}^2}.$$

a. $\lim_{T \to 0^+} \Delta L_H \approx 5 \cdot 10^{-3} \text{ cm}$

b. $\lim_{T \to 0^+} \Delta L_{\text{sm}} = 0 \text{ cm}$

Which result is correct, a or b, can be determined by direct measurement.

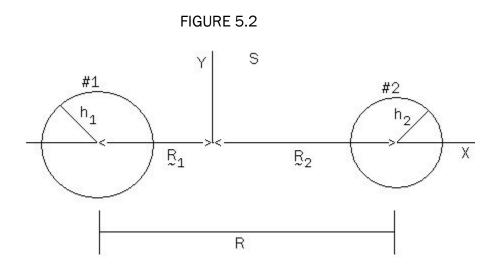
Einstein's 1906 formulation that $C_p = 3K(\frac{T}{T_0})^3$ for small enough T provided a target formula for experimentalists to aim for. If the author of this text is correct, the experimentalists that found that $C_p = 3K(\frac{T}{T_0})^3$ for small enough T, accomplished the task by placing the temperature measuring thermocouples close to the heating elements used to raise the temperature of the transition metal under experimental scrutiny. Hence 5.11a is considered to be correct.

4. Resonant Chemical Bonding

Consider an inertial frame S at rest w.r.t. the center of mass of two isolated atoms bonded together with potential energy $\Phi(R)$; See 5.3. As the two atoms move toward, collide and move away from one another, the center of mass of the two atoms remains at the origin of S. (Center on center collision, fig. 5.2).

Atom #1 has radius $h(t)_1 = \chi_1(t)$ with $\chi_1(0) = \overline{r_1}$ where $\overline{r_1}$ is the average radius of atom #1 and $A_1 << \overline{r_1}$ where A_1 is the oscillation amplitude of atom #1 and τ_1 is the oscillation period with $\chi_1(t+\tau_1) = \chi_1(t)$. $h(t)_1$ and A_1 are measured from a frame of reference at rest w.r.t. the center of mass of atom #1.

Atom #2 has radius $h(t)_2 = \chi_2(t)$ with $\chi_2(0) = \overline{r_2} + b_0$ where $\overline{r_2}$ is the average radius of atom #2 and $A_2 <<\overline{r_2}$ where A_2 is the oscillation amplitude of atom #2 and τ_2 is the oscillation period with $\chi_2(t+\tau_2) = \chi_2(t)$. b_0 is determined below. $h(t)_2$ and A_2 are measured from a frame of reference at rest w.r.t. the center of mass of atom #2. In what follows, $\chi_1(t)$ and $\chi_2(t)$ will be determined. Atom #1 has mass m_1 and atom #2 has mass m_2 .



For the present, it is assumed that no photons are produced in the collision process. See chapter 6, section 5.

Let Δm be the mass of a spherical shell at h_1 of atom #1, with $h_1 = \chi_1(t)$, $\chi_1(0) = \overline{r_1}$, and $\Delta m << m_1$. The force acting on Δm $f_1 = \Delta m \ddot{h}(t)_1 = \Delta m \ddot{\chi}_1(t) = -(\frac{m_1 \Delta m H}{(\chi_1)^2} - \frac{m_1 \Delta m H}{(\overline{r_1})^2})$

$$\text{Write } (\chi_1(t))^2 = (\overline{r_1} + \chi_1(t) - \overline{r_1})^2 \doteq (\overline{r_1})^2 (1 + \underbrace{2}_{(\overline{r_1})} [\chi_1(t) - \overline{r_1}]) \text{ and } - (\underbrace{\frac{m_1 \triangle m \, H}{(\chi_1)^2} - \frac{m_1 \triangle m \, H}{(\overline{r_1})^2}}) \text{ becomes: }$$

$$-(\frac{m_1\Delta m\,H}{(\chi_1^{})^2}-\frac{m_1\Delta m\,H}{(\overline{r_1^{}})^2})=-m_1\Delta m\,H(\frac{2}{(\overline{r_1^{}})^3})[\chi_1(t)-\overline{r_1}]. \ \ \text{Solve the resultant} \ \ \ddot{\chi}_1(t)=-m_1H(\frac{2}{(\overline{r_1^{}})^3})[\chi_1(t)-\overline{r_1}]$$
 to yield:
$$\chi_1(t)=A_1\sin\omega_0t+\overline{r_1} \ \text{and:}$$

5.12a
$$\ddot{h}(t)_{1} = -A_{1}\omega_{1}^{2}\sin\omega_{1}t$$

5.12b $\dot{h}(t)_{1} = A_{1}\omega_{1}\cos\omega_{1}t$
5.12c $h(t)_{1} = A_{1}\sin\omega_{1}t + \overline{r_{1}}$
5,12d $\omega_{1} = (\frac{2m_{1}H}{(\overline{r_{1}})^{3}})^{\frac{1}{2}}$

With similar results for atom #2.

5.13a
$$\ddot{h}(t)_{2} = -A_{2}\omega_{2}^{2}\sin(\omega_{2}t + \phi_{0})$$

5.13b $\dot{h}(t)_{2} = A_{2}\omega_{2}\cos(\omega_{2}t + \phi_{0})$
5.13c $h(t)_{2} = A_{2}\sin(\omega_{2}t + \phi_{0}) + \overline{r_{2}}$
5.13d $\omega_{2} = (\frac{2m_{2}H}{(\overline{r_{2}})^{3}})^{\frac{1}{2}}$

The phase factor ϕ_o is set at $\phi_o = \frac{3}{2}\pi(1-\frac{\omega_2}{\omega_1})$ so that at time $t_o = \frac{3\pi}{2\omega_1}$: $h(t_o)_1 = \overline{r_1} - A_1$, $h(t_o)_2 = \overline{r_2} - A_2$, $\dot{h}(t_o)_1 = 0$, $h(t_o)_2 = 0$, $\ddot{h}(t_o)_1 = A_1\omega_1^2$, $\ddot{h}(t_o)_2 = A_2\omega_2^2$.

In order to form a chemical bond it is hypothesized that at a given pressure, temperature and incident electromagnetic radiation that at $t=t_0$, m_1 and m_2 are in contact collision. Further, there exists 2 integers n_1 and n_2 such that:

5.14a
$$n_1 \tau_1 = n_2 \tau_2 = \Delta t_1$$

Where $\omega_1 = \frac{2\pi}{T_1}$ and $\omega_2 = \frac{2\pi}{T_2}$ and $\Delta t_1 = (t_1 - t_0)$ where as above t_0 is the instant at which m_1 and m_2 collide and t_1 is the instant at which the center of mass of m_1 and the center of mass of m_2 are at rest with respect to one another in inertial frame S. Using 5.12d, 5.13d and 5.14a yields:

5.14b
$$n_1 = (\frac{2m_1H}{(\overline{r_1})^3})^{\frac{1}{2}}(\frac{\Delta t_1}{2\pi}), \quad n_2 = (\frac{2m_2H}{(\overline{r_2})^3})^{\frac{1}{2}}(\frac{\Delta t_1}{2\pi}),$$

Let ΔT_1 represents the time interval between initial contact time t_o and the next contact time T_1 where $\Delta T_1 = T_1 - t_o$. It is required that for some integer p,

5.14c:
$$\Delta T_1 = p \Delta t_1$$

As above:

- a. At $t_0 = \frac{3\pi}{2\omega_1}$: both atoms are in initial contact.
- b. At $t_1 = 2\pi \frac{n_1}{\omega_1} + \frac{3\pi}{2\omega_1} = 2\pi \frac{n_2}{\omega_2} + \frac{3\pi}{2\omega_1}$ the center of mass of m_1 and the center of mass of m_2 are at rest with respect to one another.
- c. At $t_1+\Delta t_1=2t_1-t_0$, m_1 and m_2 separate and:

$$\begin{aligned} 5.14\text{d:} & & \mathsf{R}(\mathsf{t}_0) = \mathsf{h}(\mathsf{t}_0)_1 + \mathsf{h}(\mathsf{t}_0)_2 = \overline{\mathsf{r}_1} - \mathsf{A}_1 + \overline{\mathsf{r}_2} - \mathsf{A}_2, \\ & & & \mathsf{h}(\mathsf{t}_0)_1 = \overline{\mathsf{r}_1} - \mathsf{A}_1, \ \mathsf{h}(\mathsf{t}_0)_2 = \overline{\mathsf{r}_2} - \mathsf{A}_2, \ \ \dot{\mathsf{h}}(\mathsf{t}_0)_1 = \dot{\mathsf{h}}(\mathsf{t}_0)_2 = \mathsf{0}, \ \ \ddot{\mathsf{h}}(\mathsf{t}_0)_1 = \mathsf{A}_1 \omega_1^2, \ \ \ddot{\mathsf{h}}(\mathsf{t}_0)_2 = \mathsf{A}_2 \omega_2^2 \\ & & & \mathsf{h}(\mathsf{t}_1)_1 = \overline{\mathsf{r}_1} - \mathsf{A}_1, \ \mathsf{h}(\mathsf{t}_1)_2 = \overline{\mathsf{r}_2} - \mathsf{A}_2, \ \ \dot{\mathsf{h}}(\mathsf{t}_1)_1 = \dot{\mathsf{h}}(\mathsf{t}_1)_2 = \mathsf{0}, \ \ \ddot{\mathsf{h}}(\mathsf{t}_1)_1 = \mathsf{A}_1 \omega_1^2, \ \ \ddot{\mathsf{h}}(\mathsf{t}_1)_2 = \mathsf{A}_2 \omega_2^2 \\ & & & \mathsf{h}(\mathsf{t}_1 + \Delta \mathsf{t}_1)_1 = \overline{\mathsf{r}_1} - \mathsf{A}_1, \ \mathsf{h}(\mathsf{t}_1 + \Delta \mathsf{t}_1)_2 = \overline{\mathsf{r}_2} - \mathsf{A}_2, \ \ \dot{\mathsf{h}}(\mathsf{t}_1 + \Delta \mathsf{t}_1)_1 = \dot{\mathsf{h}}(\mathsf{t}_1 + \Delta \mathsf{t}_1)_2 = \mathsf{0}, \\ & & & \ddot{\mathsf{h}}(\mathsf{t}_1 + \Delta \mathsf{t}_1)_1 = \mathsf{A}_1 \omega_1^2, \ \ \ddot{\mathsf{h}}(\mathsf{t}_1 + \Delta \mathsf{t}_1)_2 = \mathsf{A}_2 \omega_2^2 \end{aligned}$$

Using figure 5.2; for any two atoms chemically bonded together, the initial conditions, total energy E_T and momentum are given by:

$$\begin{split} 5.15a \quad & \mathsf{E_T} = \frac{1}{2} \mathsf{m_1} \, \mathsf{V_1^2(t)} + \frac{1}{2} \mathsf{m_2} \, \mathsf{V_2^2(t)} + \Phi(\mathsf{R}(\mathsf{t})) + \mathsf{m_1} \mathsf{C}(\mathsf{t})_1 + \mathsf{m_2} \mathsf{C}(\mathsf{t})_2 = \mathsf{const.} < \mathsf{O} \\ & \mathsf{m_1} \, \mathsf{V_1}(\mathsf{t}) + \mathsf{m_2} \, \mathsf{V_2}(\mathsf{t}) = \mathsf{m_1} \, \mathsf{V_1}(\mathsf{O}) + \mathsf{m_2} \, \mathsf{V_2}(\mathsf{O}) \\ & \mathsf{V_1}(\mathsf{t}) = \dot{\mathsf{R}}_1(\mathsf{t}) \, \hat{\mathsf{X}}, \ \, \mathsf{V_2}(\mathsf{t}) = \dot{\mathsf{R}}_2(\mathsf{t}) \, \hat{\mathsf{X}}, \ \, \mathsf{V_1}(\mathsf{O}^-) = \dot{\mathsf{R}}_1(\mathsf{O}^-) > \mathsf{O}, \ \, \mathsf{V_2}(\mathsf{O}^-) = \dot{\mathsf{R}}_2(\mathsf{O}^-) < \mathsf{O} \\ & \mathsf{R}(\mathsf{t}) = \mathsf{R}_1(\mathsf{t}) + \mathsf{R}_2(\mathsf{t}), \ \, \mathsf{R}(\mathsf{O}) = \mathsf{h_1}(\mathsf{O}) + \mathsf{h_2}(\mathsf{O}) = \overline{\mathsf{r_1}} - \mathsf{A_1} + \overline{\mathsf{r_2}} - \mathsf{A_2}, \end{split}$$

 $V_1(t_0)$, $V_1(t_1+\Delta t_1)$ represent the initial and final speed of the center of mass of atom #1 at collision and at separation and $V_2(t_0)$, $V_2(t_1+\Delta t_1)$ represent the initial and final speed of the center of mass of atom #2 at collision and at separation as measured from inertial frame S, where $V_1(t_0)>0$ and $V_2(t_0)<0$. Using the conservation of translational kinetic energy and momentum equations yields:

5.15b
$$V_{1}(t_{1}+\Delta t_{1}) = \frac{(m_{1}-m_{2})V_{1}(t_{0})+2m_{2}V_{2}(t_{0})}{(m_{1}+m_{2})}$$

$$V_{2}(t_{1}+\Delta t_{1}) = \frac{2m_{1}V_{1}(t_{0})-(m_{1}-m_{2})V_{2}(t_{0})}{(m_{1}+m_{2})}$$

The computed linear speeds will be modified however by the creation of solid mass photons. The physical process whereby photons with total energy $\frac{3}{2}$ KT+m_{ph}C₁ (3.29), are created, is described in chapter 6.

5. Exothermic and Endothermic Chemical Reactions

Consider the exothermic reaction $2H_2+0_2$ —> $2H_20+5.7$ ev where the binding energy of $2H_2$ is -9.0ev, that of 0_2 is -5.2ev and that of $2H_20$ is -19.9ev as determined from spectroscopic data.

On the other hand the disassociation of water occurs at $\sim 2.5 \cdot 10^3$ °K with energy equivalent 0.32ev. The binding energy of $2H_2O$ is therefore -0.64ev. The spectroscopic based disassociation of water binding energy is -19.9ev. This value is based on Bragg's Law, the wave nature of light and E=hv, all of which are false as discussed in chapter 6. Consequently the disassociation of water binding energy is NOT-19.9ev.

As regards exothermic reactions, the energy for the observed increase in temperature of the reactants comes from a decrease in the internal energy ΔmC_1 of the involved atoms with resultant decrease in radius of the involved atoms. In endothermic reactions the energy for the observed decrease in temperature of the reactants goes into increasing the internal energy ΔmC_1 of the involved atoms with resultant increase in radius of the involved atoms.

6. Appendix 5A

It is possible that instead of $r_0 = r_0(T)$, $r_0 = r_0(T,t) = r_0(T) + a_0(T) \sin[\omega(T)t]$ with $a_0(T) << r_0(T)$. In this case, the $a_0(T) \sin[\omega(T)t]$ is passed on by direct contact to neighbor atoms where the neighbor atoms initially have $r_0 = r_0(T)$. In this way the oscillation energy is passed from atoms of the transition element to the atoms surrounding the transition element. This represents a further way in which energy will be lost by the transition element.

7. Appendix 5B

The following applies for calorimeters using water as a constant heat source. Consider a rectangular solid of constant cross section x^2 and volume x^2L with surface area $2x^2+4xL$. $\frac{N}{N_T}$ becomes, $\frac{N}{N_T}$ becomes, $\frac{N}{N_T}$ becomes, $\frac{N}{N_T}$ and with L<<x (Thin film limit) $\frac{N}{N_T}$ su $\pm 4r_0(L)^{-1}$ and with L= $2nr_0$, $\frac{N}{N_T}$ becomes: $\frac{N}{N_T}$ becomes: $\frac{N}{N_T}$ becomes:

For small enough n, the photons are not adsorbed by the thin film but punch their way through the atoms of the thin film. See chapter 6 section 7. For such films, the absorbance term $-\frac{N}{N_T} \text{Su} \frac{3}{2} \text{KT}_{ph}^{\text{i}} (\frac{\text{d}N}{\text{d}T}_{ph,in}^{\text{in}})_{p}$ goes to 0. See 5.9.

Let M(n) be the transmittance of the foil for infrared photons produced by water at $373^{\circ}K$ where $0 \le M(n) \le 1$. For M=1, all of the infrared photons incident to the foil go through the foil with no loss of energy and for M=0 all of the photons incident to the foil are stopped by the foil.

Using 5.6, evaluated for Ag, C_p becomes:

5.15
$$C_{p} = \frac{3}{2}K + 1.1 \cdot 10^{4} \left[a_{1} + 2.2 \cdot 10^{-11} a_{2} \right] K + 1.4 \cdot 10^{18} \frac{dr_{0}}{dT} \cdot K + 2 \cdot 10^{7} (n)^{-1} \left\{ \Omega_{Cr} \left(\frac{dN}{dT} ph, out \right)_{p} + \frac{3}{2} K \Delta T'_{ph} \left(\frac{dN}{dT} ph, in \right)_{p} - \frac{3}{2} K T'_{ph} \left(\frac{dN}{dT} ph, in \right)_{p} \left[1 - M(n) \right] \right\}$$

And using 5.15, 5.9, and $1.1 \cdot 10^4 [a_1 + 2.2 \cdot 10^{-11} a_2] K = 1.5 K$

5.16
$$C_p = \left\{ \frac{3}{2} + \frac{3}{2} + 1.4 \cdot 10^{18} \frac{dr_0}{dT} + 2 \cdot 10^7 (n)^{-1} (1.6 - 1.9[1-M(n)]) \right\} K$$

For thin films, i.e. $n=1,2,3,...,\approx 10^4$; $1.4\cdot 10^{18} \frac{dr_0}{dT} + 2\cdot 10^7 (n)^{-1} (1.6-1.9[1-M(n)])$ are predicted to satisfy: $1.4\cdot 10^{18} \frac{dr_0}{dT} + 2\cdot 10^7 (n)^{-1} (1.6-1.9[1-M(n)]) = K^{-1.5}C_{p,ex}$ where $C_{p,ex}$ is the experimentally determined specific heat of Ag. For $n=n_0,n_0+1,n_0+2,+...$

where $n_0 \approx 10^4$, and for the special case $1.1 \cdot 10^4 [a_1 + 2.2 \cdot 10^{-11} a_2] K = 1.5 K$ and using 5.10: 5.16 reverts to:

5.17
$$C_p = 3K + 1.9 \cdot 10^2 \frac{dr_0}{dT} = 0.29K = 3.1K$$